Biomechanical Analysis of the human femur bone during normal walking and standing up
نویسنده
چکیده
Biomechanics is a field that combines the disciplines of biology and engineering mechanics and utilizes the tools of physics, mathematics, and engineering to quantitatively describe the properties of biological materials. Finite element modeling has been widely used to describe the mechanical behavior of the long bones which have been created from CT (Computer Tomography) images In this study a three dimensional model of the human femur bone has been developed and the data associated with the hip contact forces for normal walking and standing up during one cycle has been employed on the femur bone in order to investigate behavior of the femur bone during these activities. The finite element results (stresses) are obtained and compared with previous studies . The behavior of the stresses that obtained in the present study is similar to those found in the literature . The results of the analysis are helpful for the orthopedic surgeon to understand the biomechanical behavior of the femur bone and also important for surgeon in femur surgeries and bone prosthesis.
منابع مشابه
Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.
Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the...
متن کاملEffect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis
This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...
متن کاملThe Most Appropriate Reconstruction Method Following Giant Cell Tumor Curettage: A Biomechanical Approach
Giant cell tumor (GCT) is a primary and benign tumor of bone, albeit locally aggressive in some cases, such as in the epi-metaphyseal region of long bones, predominantly the distal end of femur and proximal end of tibia (1). There are a variety of treatments for a bone affected by GCT, ranging from chemotherapy, radiotherapy, embolization, and cryosurgery, to surgery with the use of chemical or...
متن کاملThe Influence of Horizontal Velocity on Inter-Lower-Limbs Local and Global Asymmetry during Walking
Purpose: Considering the influence of horizontal velocity on many biomechanical characteristics of walking, the purpose of this study was to investigate how inter-lower-limbs local and global asymmetry is influenced by changes in walking speed from slow to fast. Methods: Ground reaction force data and trajectory of attached markers of bilateral lower limbs of 15 right leg-dominant able-bodied ...
متن کاملAn investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کامل